Congratulations to our partner GR3N for winning the 2018 Innovation Radar Prize with their breakthrough technology for PET upcycling!

Read more here.

 DtvTjjGWkAEc4Ph

We will be present at Ecomondo 2018 in Rimini on next November, 6th-9th. A special conference has been organized dedicated to industrial symbiosis applications in real industrial contexts. 

The developed LCSA tool will be demonstrated during the conference as well as the tool for the energy demand-response scheduling and planning. 

More info on the event can be found here or write to This email address is being protected from spambots. You need JavaScript enabled to view it.

This email address is being protected from spambots. You need JavaScript enabled to view it.

SYMBIOPTIMA and the SIMS software have be presented at ACHEMA 2018 by SPIRAX SARCO. SIMS enables monitoring, diagnostics and communications across steam plant and packaged systems. The technology delivers meaningful energy management and system performance data to the user allowing the optimisation of the steam system and subsequent efficiency improvements.

ACHEMA 2018 took place in Frankfurt  (June 11-15, 2018).

IMG 2706

The Process Industry Conference that took place on 19th September in Brussels gathered all the relevant stakeholders for the European Process Industry. The day was dedicated to picturing the future EU process industry (download presentations here) and pitching SPIRE project.

 

On 2nd March 2017 Andrew Marshall (Spirax Sarco Ltd) presented Symbioptima at the IOR's International Refrigeration Committee, focused on the business opportunities of environmental policy and international energy reduction targets: what are the drivers and successes to date in achieving energy efficiency savings and lowering emissions?

Read more here.

Download presentation Case Study SYMBIOPTIMA Smart Thermal Grid Data Storage.

Substantial energy and resource efficiency improvements are priority requirements for manufacturing industry. Energy costs charged by energy companies fluctuate according to time and consumption peaks; to reduce the energy bill, manufacturing industries need to manage production operations with an energy effective planning to avoid peaks and to perform high consumption operations when the energy cost is cheaper. The need to optimize energy and resource becomes also more critical inside an industrial park, where the energy consumption of the different plants needs balancing to avoid supply shortage. 

It is unfeasible of course to drive production only on an energy base, as a plant has usually many other constraints; however, it is quite always possible to tune production to get a better energy efficiency. To get this target it is necessary to correlate precisely energy consumption with production data in order to be able to understand the impact of different steps of execution in term of energy and production.

Within SYMBIOPTIMA (work package 3), an Energy and Resource Management System (ERMS) application has been developed to combine energy and production data and to provide a clear picture of manufacturing operations.

The role of ERMS is to collect energy consumption data from the devices involved in a given manufacturing operation and associate these data to the production details (i.e. production step, machinery, material usage, production outcome etc.) in order to provide a comprehensive description of all resources used in a given production step. Through the analysis of each production steps it is possible to design an optimized production process and planning.

The design of ERMS is structured on separate layers (i.e. Virtual directory and ERMS platform layers), which process the information, in separate and self-consistent blocks, and transform the raw data coming from the production unit into business relevant information. The Virtual Directory layer connects the line sensors and equipment and has the aim of transforming the data originated in various formats, into consistent data, based on consistent and globally shared ontology. Virtual Directory allows the easy deployment of the ERMS on different lines producing a separation between the ERMS engine and data sources and reduce customization efforts.

The ERMS platform layer is designed according to Service Oriented Architecture (SOA) principles and provides a data model and business logic for the consistent processing of data inside a cluster environment. Energy and manufacturing data, aggregated according to production steps, are exposed through standard interface to be consumed by specific tools.

ERMS is implemented using standard technologies and can be deployed in standalone mode inside a single plant or as distributed system in an industrial park.

ERMS architecture

ERMS architectural stack

The configuration for industrial park or cluster of plants has to face additional constraints regarding protected communication and data confidentiality. In this configuration a federation of applications is used; internal systems with full data access are  installed at plant level and these system communicate with an external aggregator that exposes a subset of aggregate data assuring the confidentiality of the production data of each plant.

In conclusion, the developed ERMS allows energy data collection and the association of energy and production data to evaluate the impact of energy in each production step. This aggregate information is fundamental to understand the impact of energy in the production process and it is necessary to reshape production execution, in term of Bill of Process and production scheduling to get an energy aware production able to save costs in terms of money and environmental impact.